Synthetic Chemistry Group

Services, technologies and facilities of Synthetic Chemistry Group

■ Development of efficient and practical synthetic route

• Retro synthesis design based on extensive experience, process shortening using advanced platform technology

■ Non-GLP bulk synthesis (~1 kg)

High quality control (purity, residual solvent and metals, crystalline form etc.)

■ Synthesis of isotope labeled compounds

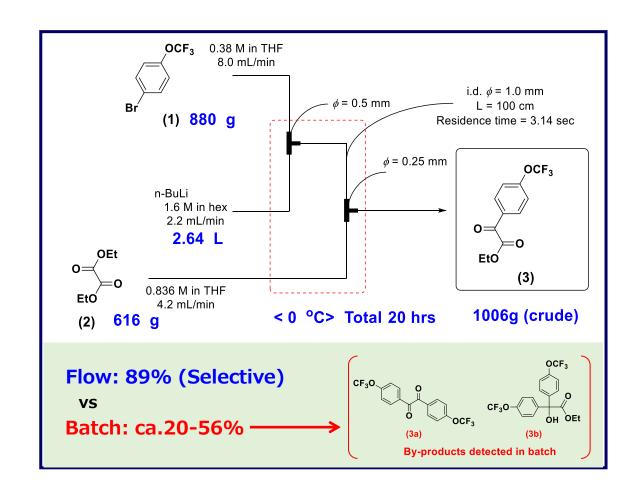

- Synthesis of stable isotope labeled compounds (²H, ¹³C, and ¹⁸O etc)
- Development of efficient synthetic route for radioisotope labeled compounds (³H, ¹¹C, and ¹⁴C) using cold compounds (Hot synthesis is outsourced)

■ Platform technologies

Continuous flow chemistry, Photo redox cat. Reaction, Autoclaves etc.

Excellent facilities

Automated sealed tube reactor, Jet-mill, Flow photo reactor, Autoclave etc.



Flow Chemistry

■ Kilogram-scale synthesis by continuous flow microreactor system

Set up of flow reaction system

A. Flow microreactor

B. Multi-gram scale synthesis

C. Kilo-gram scale synthesis

Flow chemistry enables reactions that have difficulties in batch system!



Synthesis of deuterated compounds by flow photo reaction

■ Establishment of efficient synthetic method for TAK-828-d₅ by using flow photo reaction

Flow: 3.6 g/10 hrs Batch: 0.48 g/68 hrs

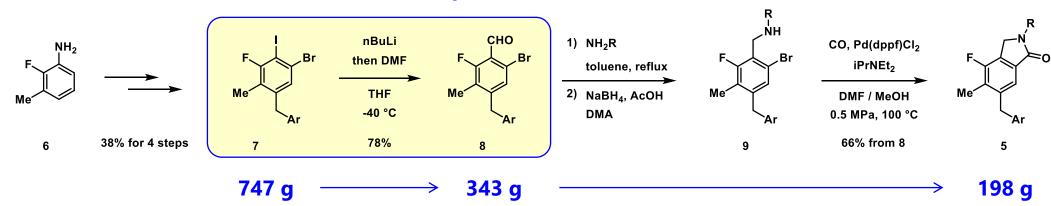
 $d_0: d_1: d_2: d_3: d_4: d_5 =$ n.d.: n.d.: 0.7: 9:47:100

ROR inverse agonist (WO 2016002968)

- Cyclobutane derivative 3 labeled with deuterium at 3-positions was synthesized by [2+2]cycloaddition of compound 1 followed by hydrogenation with deuterium.
- Synthetic route of TAK-828-d₅ has been established by introducing additional two deuterium via Wolff rearrangement.

T. Yamashita, 4th International Symposium for Medicinal Sciences (2018).

Application of flow chemistry to establish efficient synthetic route



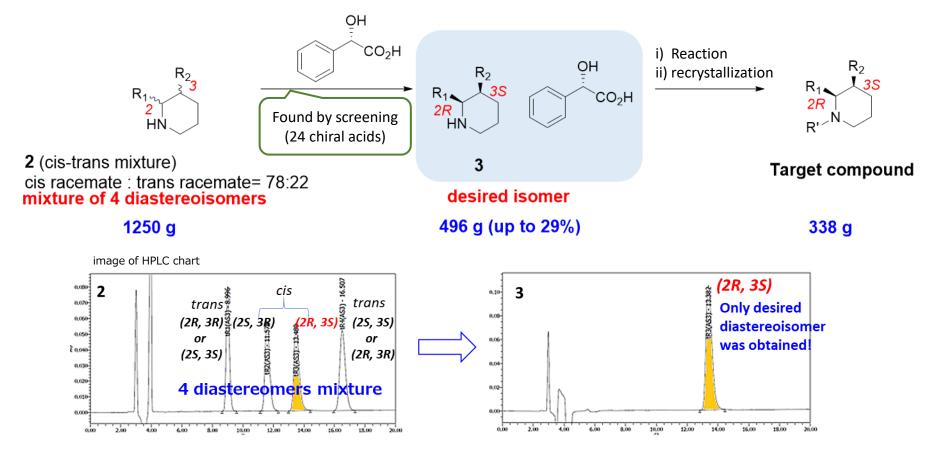
Averting toxic metal reagents

Original Route

Axcelead's Route

Flow Chemistry

- Averting problematic reagents for scale-up synthesis has been achieved by taking advantage of flow chemistry.
- Efficient synthetic route of isoindolinone ring has been established.


Org. Biomol. Chem., 2019, 17, 8166.

Development of practical synthetic route

Optical resolution via diastereomeric salt formation

- > The method to obtain single isomer from the mixture of 4 isomers without preparative HPLC purification has been established by diastereomeric salt formation.
- > The absolute configuration of target compound has been determined by single crystal X-ray structure analysis of diastereomeric salt.