第56回日本肝臓学会総会 2020年5月21日 (木) セッション4 「NASH基礎1」 ⇒ 誌上発表

共培養 *in vitro* 線維化モデルおよび コリン欠乏高脂肪食負荷NASHモデルにおける ACC1/2阻害薬Firsocostat (GS-0976) の抗線維化作用

> Axcelead Drug Discovery Partners 株式会社 統合トランスレーショナル研究 統合生物

三角 裕子

日本肝臓学会 COI 開示

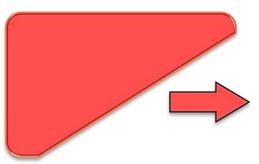
発表者名:三角 裕子

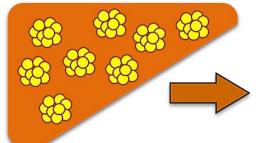
演題発表に関連し、開示すべき COI 関係にある企業などはありません。

アジェンダ

> 共培養を利用した in vitro 線維化モデル

□ コリン欠乏高脂肪食負荷マウスNASHモデル


肝線維化進展のメカニズム


患者の肝線維化移行

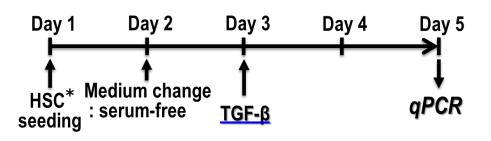
病態を模倣した共培養 in vitro モデル

脂肪を蓄積した

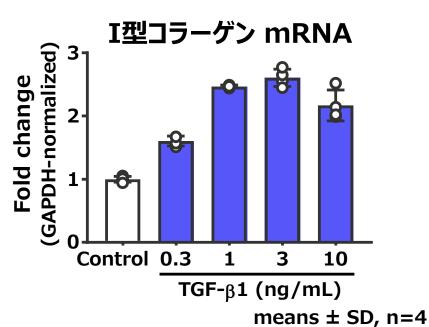
線維化関連遺伝子↑

ヒト肝実質細胞 (HepG2)

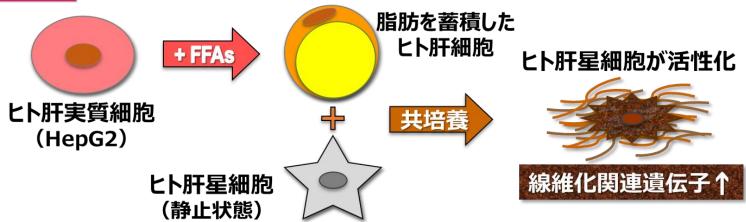
> ヒト肝星細胞 (静止状態)


ヒト肝星細胞 (HSC) 単独 in vitro 線維化モデル

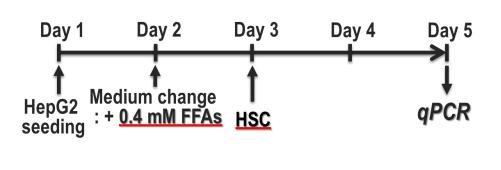
ヒト肝星細胞単独培養モデル

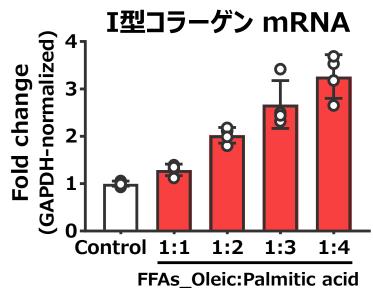


Protocol



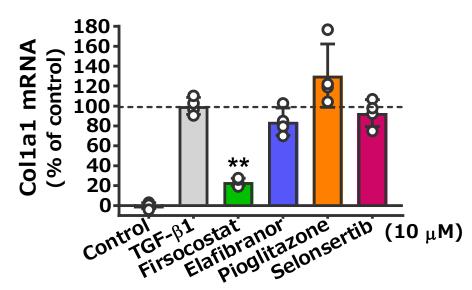
*: Hepatic stellate cells

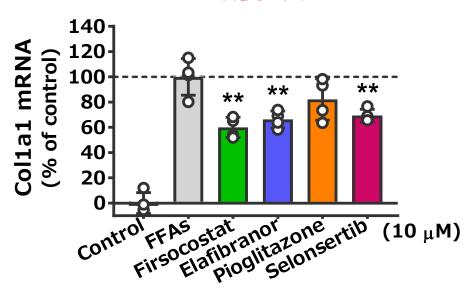



共培養 in vitro 線維化モデル

共培養モデル

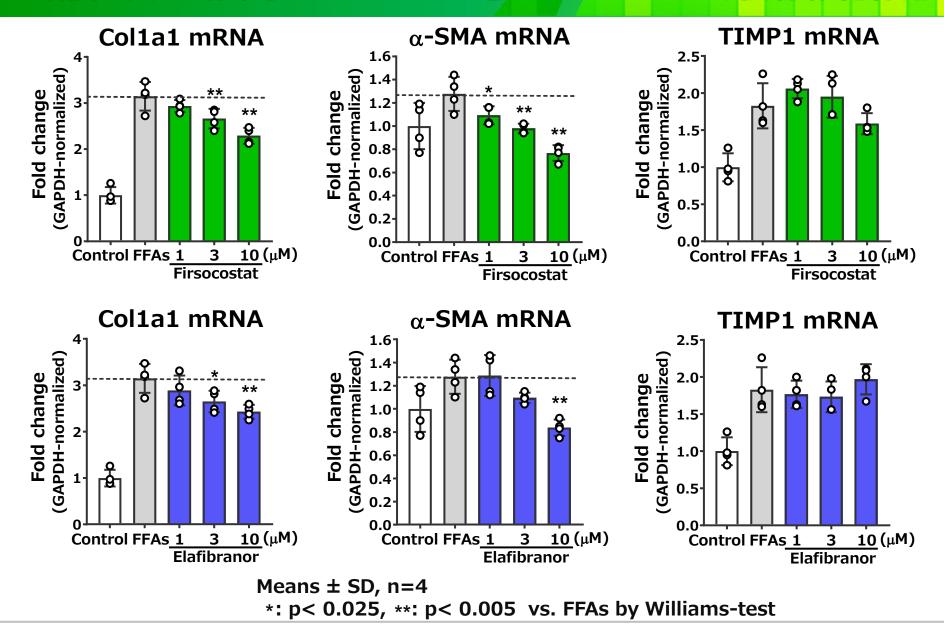
Protocol


means \pm SD, n=4


In vitro 線維化モデルを利用した薬物評価

薬物	作用機序
Firsocostat	ACC1/2 阻害剤
Elafibranor	PPARa/δ アゴニスト
Pioglitazone	PPARγ アゴニスト
Selonsertib	ASK1 阻害剤

ヒト肝星細胞単独培養モデル


共培養モデル

Means ± SD, n=4
**: p< 0.01 vs. FFAs by Student t-test

共培養モデルにおけるFirsocostat と Elafibranor の抗線維化作用

アジェンダ

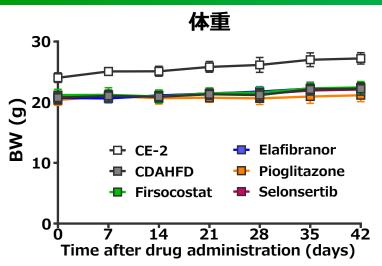
> 共培養を利用した in vitro 線維化モデル

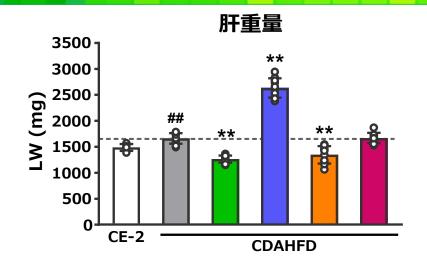
> コリン欠乏高脂肪食負荷マウスNASHモデル

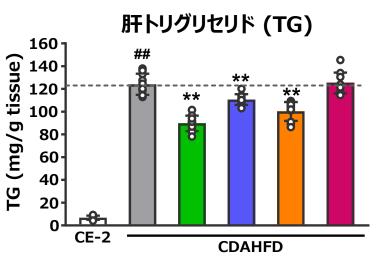
CDAHFD 負荷モデルを利用した薬物評価

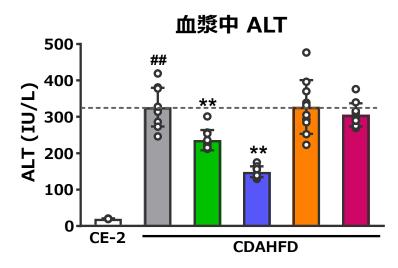
- Animal: CDAHFD*負荷C57BL/6Jマウス
 - * Choline-deficient, L-amino acid-defined, high-fat diet consisting of 60 kcal% fat and 0.1% methionine (Research diet #A06071302)

Protocol

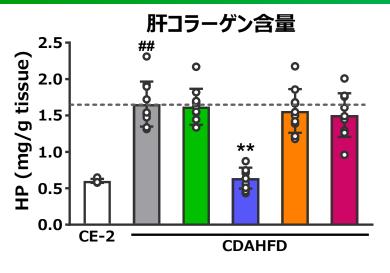


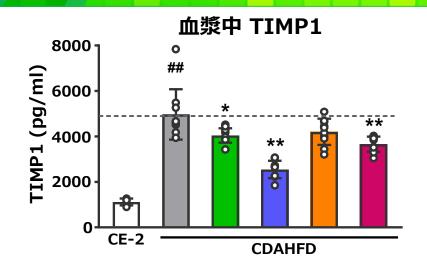

■ Groups

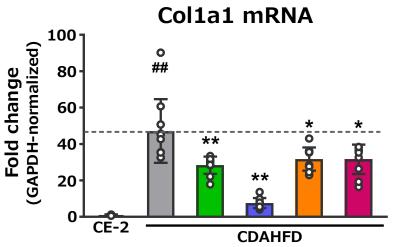

グループ 食餌	⇔ ≙F	薬物処置		n
	薬物	作用機序		
1	CE2	Vehicle	-	5
2		Vehicle	-	10
3		Firsocostat	ACC1/2 阻害剤	10
4	CDAHFD	Elafibrator	PPARa/δ アゴニスト	10
5		Pioglitazone	PPARγ アゴニスト	10
6		Selonsertib	ASK1 阻害剤	10

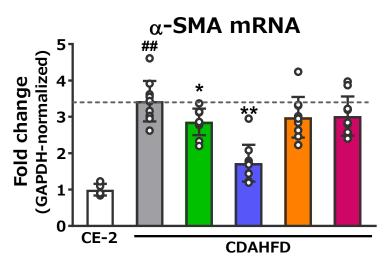


体重、肝重量、肝TG、血漿中ALTに対する薬物の作用


Means ± SD, veh_CE-2: n=5; Other groups: n=10


##: p< 0.01 vs. veh_CE-2 by Student t-test or Aspin-Welch t-test


**: p< 0.01 vs. veh_CDAHFD by Student's t-test or Aspin-Welch t-test



肝線維化関連マーカーに対する薬物の作用

Means ± SD, veh_CE-2: n=5; Other groups: n=10 ##: p< 0.01 vs. veh_CE-2 by Student t-test or Aspin-Welch t-test

*: p< 0.05, **: p< 0.01 vs. veh_CDAHFD by Student's t-test or Aspin-Welch t-test

まとめ

共培養 in vitro 線維化モデル

- ➤ 肝星細胞の線維化は脂肪肝様HepG2 作製時の遊離脂肪酸のパルミチン酸含有比に依存して増加した。
- ▶ 本モデルにおいてFirsocostat、Elafibranor およびSelonsertib は線維化マーカーであるI型コラーゲン遺伝子発現の有意な抑制を示した。

(肝星細胞単独評価モデルではFirsocostat のみが有意に抑制)

CDAHFD負荷 NASHモデル

- > 脂肪肝、肝傷害、肝線維化を有意に誘導した。
- 本モデルにおいてFirsocostat、Elafibranor、Pioglitazone は有意に脂肪肝を 改善した。
- ▶ 有意な抗線維化作用抑制を示したのはElafibranor のみであった。

評価モデルのブリッジングと今後の候補薬物選択への期待

- ➤ In vivo NASHモデルで抗線維化作用を示したElafibranor は肝星細胞単独培養モデルでは抗線維化作用を示さなかったが、共培養モデルでは抗線維化作用を示した。
- ➤ 新規 NASH治療薬候補のスクリーニングは以下のプロセスが期待される。
 共培養 in vitro モデル → CDAHFD 負荷モデル

