270-ISMS32

無断転載禁止

using continuous photo flow chemistry Toshiro Yamashita, Hitoaki Nishikawa, Tetsuji Kawamoto.

Rapid and efficient synthesis of deuterated cyclobutane derivatives

Chemistry, Research Division, Axcelead Drug Discovery Partners, Inc.

total 10.5%

Background

Conventional synthetic methods

Synthetic strategy

Cyclobutyl ring system has been used in medicinal chemistry as bioisosters of olefin and phenyl ring to improve biological activity and toxicity.

Target D labeled compounds (New compounds)

1)Internal standard compounds in non-clinical / clinical pharmacokinetic No d0 compound must be contained. ·Introduction of more than three or

four D atoms are essential.

2Introduction of D atom at metabolic position to improve pharmacokinetic properties.

① Chem. Ber., 116 669 (1983)

No effective synthetic method for 3c and 5

Raise up the efficacy of photo reaction in safer solvent using photo flow chemistry.

Photo flow chemistry

Photo flow reaction is more efficient than batch reaction.

- Specific surface area of irradiation was larger than batch
- reaction due to short i.d. of flow tube.
- Smaller amount of by-product was formed because product was immediately flowed out before degradation.

Photo flow reaction system

0.05 M

Photo flow reaction system A

<u>2a</u>

Initial study of photo flow chemistry using methyl ester 1a

System A 1)

4) Batch reaction in Pyrex tube (i.d. 12 mm), reaction time 120 min.

Photo flow reaction was cleaner than photo batch reaction.

Batch reaction gave a lot of byproducts (entry 9).

3b cis only

entry 8 (Flow) 360 min

Pt/C

Batch

The condition used in entry 5 was found to be proper for this reaction.

Optimization of photo flow chemistry using tert-Bu ester 1b

entry	<u>1b</u> (M)	Flow rate (mL/min)	Flow time (min)	Rt (min)	HPLC		3b Isolated 3b productivity
					<u>2b</u>	<u>1b</u>	(g / 10 hr)
10	0.05 (780 mg)	0.2	400	17.7	92	8	678 mg (85%) 1.0
11	0.05	0.2	-	49.7 ¹⁾	91	9	
12	0.05	0.2	-	59.7 ²⁾	94	6	by-product
13	0.05 (13.5 g)	0.3	4560	39.8 ²⁾	86	14	11.1 g (81%) 1.5

- 1) FEP tube (i.d. 1.59 mm, L 500 cm) was used. 2) FEP tube (i.d. 0.75 mm, L 2700 cm, wound with two layers) was used.
- ·Thicker tube (i.d. 1.59 mm, L 500 cm) gave the same potency (entry 11). ·Increase in tube length enhanced the conversion to some extent

Introduction of D atoms to cyclobutane ring system

concomitant with increasing the amount of by-product (entry 12). ·11.1 g of tert-Bu ester 3b was successfully obtained (entry 13).

Flow rate HPI C

12 mm pyrex tube

Hg lamp

10-15 °C

solvent.

1b 0.05 (M)

Reaction temp.

	entry	system	d ¹⁾		Flow rate (ml/min)	Rt (min)	HPLC		3b productivity
_							<u>2b</u>	<u>1b</u>	(g / 10 hr)
	10	Α	53	toluene	0.2	17.7	92	8	1.0
	14	Α	43 ²⁾	toluene	0.4	16.1	92	8	2.0
	15	Α	43	toluene	0.5	12.9	76	24	-
	16	Α	43	CH₃CN ³⁾	0.5	12.9	86	14	2.4
_	17	В	43	CH₃CN	0.75	10.0	86	14	3.6

Optimization of photo flow chemistry using tert-Bu ester 1b

Batch photo reaction

- 1) d: light tube diameter. 2) 400 W Hg lamp (pyrex filter). 3) Low conversion was found in THF, AcOEt, n-hexane and DMF.
- ·Productivity raised up to 2 .0 g per 10 hr when the immersion well with
- shorter diameter (D) was used (entry 14). ·Productivity raised up to 2.4 g per 10 hr when CH₃CN was used as solvent (entry 16).

·Productivity raised up to 3.6 g per 10 hr when flow system B was used (entry 17).

Preparation of new D labeled compounds 3c and 5

- 1) D content of 3c was determined by LCMS analysis of amide 12
- 2) 0.025-0.075 M, Flow rate 0.4 mLmin
- 3) <u>2b</u> was used after azeotropical distillation with MeOD.

d0 compound was not detected (entry 6).

ÇO₂t-Bu 1) CICOOEt, Et₃N Pt/C, D₂ CO₂t-Bu h_{V} / MeOD 2) TMS-C=N=N **Flow** Batch 18-41 % ČO₂H CO₂t-Bu CO₂t-Bu 78-81 % <u>1b</u> <u>2b</u> <u>3c</u> BnOH + MeOD d0:d1:d2:d3=n.d.:1:19:100 Two D atoms were introduced BnOD, CO₂t-Bu CO₂H AgOOCPh on methylene carbon of D, TFA compound <u>5</u> by Wolff rearrangement reaction in BnOD. quant. 56-58% ÓBn ÓВп 5 cis only H-D exchange of active d0 : d1 : d2 : d3 : d4 : d5 = methyne carbon in compound 4 n.d.: n.d.: 0.7: 9:47:100 was proposed. Proposed mechanism CO₂t-Bu CO₂t-Bu BnOD, Et_3N

Summary and Future plan

¹H NMR analysis of D labeled compound 8

H3₂₅ A HO. H₃ H₃ OBn **H1 H2** M05(m) H_4 H_4 NOE H3-H5, H4-**H2** M02(d) В compound 8 2.01 90% M04(t) **OBn** 8 M03(m) 95%

 H_5

D

90%

Summary

0

- More efficient method to synthesize compounds 3a and 3b using photo flow chemistry in safer solvent was established.
 - Photo flow reaction was cleaner than photo batch reaction. The distance between lamp and reactor tube is relevant to the efficacy.

Wolff

rearrangement

- Productivity was raised up to 3.6 g / 10 hr using system B.
- Introduction of D atoms to cyclobutane ring system with high deuterium content was successfully achieved. No d0 compound was contained.
- Two D atoms could be introduced on methylene carbon of compound <u>5</u> by the Wolff rearrangement reaction in BnOD.

Future Plan

- Further optimization of the photoreaction conditions to
- improve productivity (numbering up etc.). ·Further contribution to Medchem. (Synthesis of D compounds,
- metabolite, unique library etc.). Fully deuterization of cyclobutane ring system.

ÓBn

<u>5</u>