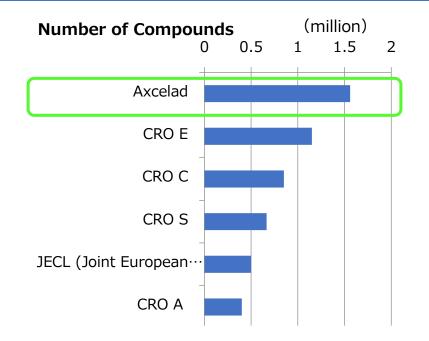


Axcelead Drug Discovery Partners Inc.



The lead-like and diversity compound library

>1,500,000 Compounds

- Purchased compounds : Maximally diverse lead-like cpds,>180 different and selected vendors
- Inhouse compounds:
 >600 different programs of small-molecule drug discovery, a rich store of ADMET data
 Library design and synthesis: Novelty, chemical properties, and diversity-oriented

Library Size

Quality **Molecular Weight Druglikeness QED: (Chemical beauty)** Non-druglike < 0.3Drug-like/beauty > 0.7 Ave. 0.62 Drug-like $0.3 \sim 0.7$ In-house compounds Purchased In house 60%

QED: Quantitative Estimate of Drug-likeness

PCA: Principal Component Analysis

Library Sets for HTS

Axcelead libraries >1,500,000 cpds

Diversity, Chemical Structure Solubility data, Cell toxicity data Activities data

Diversity Library

Single 200K

Diversity Library

• Pilot screening: 2,560

Clean-A: 10,240

Clean-B: 44,180

· CNS: 18,900

sp³rich and chirality rich: 7,500

Phenotypic Sc. : 22,000

Fragment (Ro3.5): 11,000

Extended rule of 5 : 6,400

Diversity set A: 24,000

• Diversity set B : 18,540

Core Library (FY21): 33,000

Pooled 720K

Pool:10 different cpds per one sample

Diversity Library

Pilot screening: 32,000

1: 292,000 (High Priority)

2: 396,000

Focused Library 41K

> Target class Kinase: 8,500 GPCR: 9,300 Protease: 401 PPI:4,100 RNA: 6,400

RNA splicing (FY21) :1,280

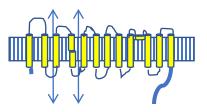
➤ Macrocyclic: 6,400

> Natural product: 3,700

≻ Covalent: 3,800

➤ Phenotypic Sc. Annotation: 7,000

Covalent fragment (FY21):50


Assay platforms

GPCR

cAMP assay Ca²⁺ flux assay Reporter gene assay Arrestin/Internalization assays Binding assay, Impedance assay

Ion channel / Transporter

Ion influx assay
Membrane potential
Electrophysiology
Substrate uptake
Binding

Enzyme

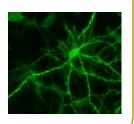
Direct assay

- Absorbance, fluorescence, FRET
- ELISA
- Label-free assay (e.g. HT-MS)

Indirect assay

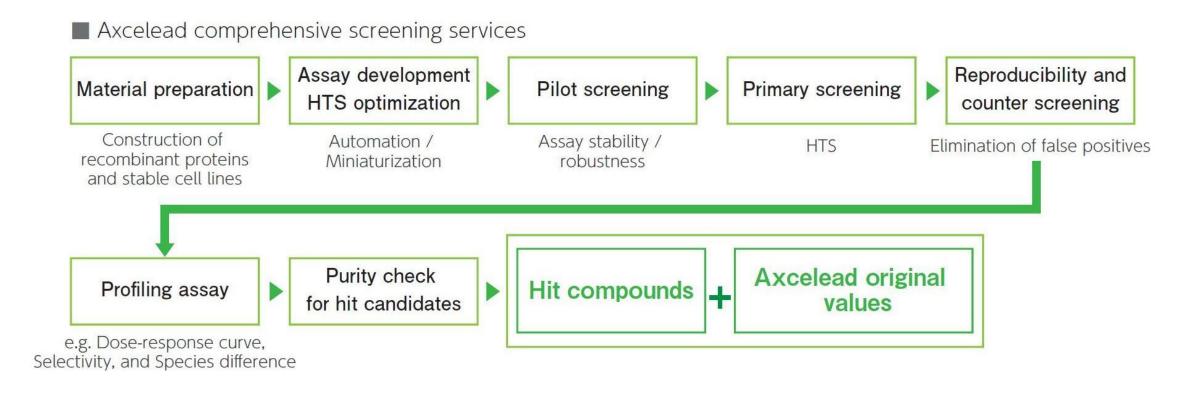
• Coupling assay (e.g. ATP by luciferase)

Nuclear receptor


Binding assay Cofactor recruit assay Reporter gene assay Nuclear translocation assay

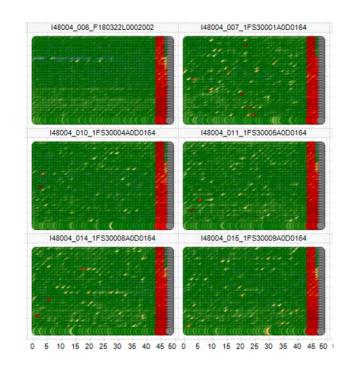
PPI (protein-protein interaction)

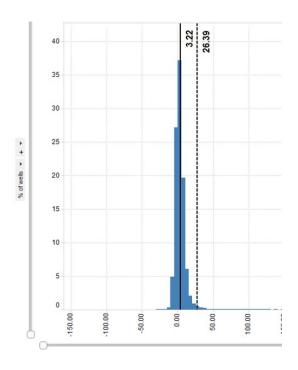
TR-FRET/Alpha screen assay
ELISA
NanoBit/BRET
Two-hybrid assay
Biophysical assay (e.g. Surface Plasmon
Resonance)


Phenotypic screening

High-content assay Reporter gene assay Cell growth qPCR CRISPR Cas KO screen etc.

General hit finding process


We can also conduct HTS campaigns using each client's assay system.



High throughput Screening (HTS)

Target Assay Screening Screening Lead optimization IND

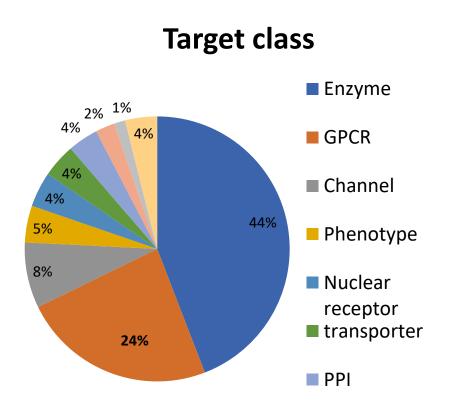
- HTS adaptation
 - Fully automation system
 - Miniaturization (384/1536 well format)
- Pilot screening
 - Feasibility
 - Robustness
- Implementation of HTS
- Data analysis
 - Primary screen
 - Counter assay
 - EC₅₀/IC₅₀
 - Purity of compounds
- Profiling
 - Species difference
 - Selectivity
 - Mode of action etc.

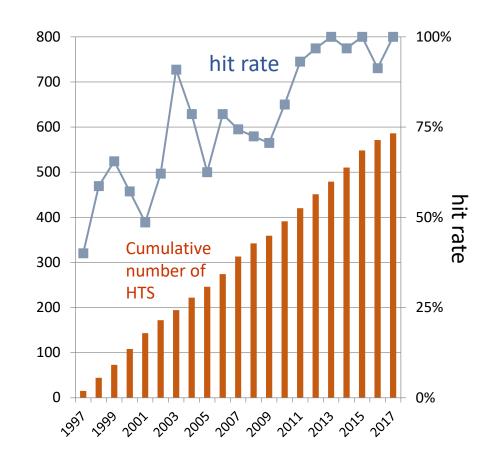
Facilities and capability for general HTS

- Ultra High Throughput Screening capabilities (full automation, 1536-wells format)
- State-of-the-art equipment compatible with diverse assays
 - Acoustic liquid handling system for ensuring high accuracy at low volume
 - Biochemical screening (Fluorescence, Absorbance, Luminescence, qPCR)
 - High-content screening
 - HT-Mass spectrometry screening
 - Electrophysiological screen with HT-autopatch systems
- Data analysis platform to support all screening processes
- Ability to perform HTS under BSL2 conditions
- Ability to perform Radioactive HTS

➤ Fully automated screening system (FUJIFILM Wako)

Acoustic droplet dispensing system (Labcyte)


RapidFire-MS/MS systems (Agilent)



Syncropatch 384 (Nanion)

HTS track record

> Our team has achieved more than 600 HTS campaigns for multiple target classes with high hit rates

General Cascade of Hit Finding

Primary screen (n1, 1dose) Hit Deconvolution assay (for active samples from pooled lib.) (3,200 cpds) finding Counter assay (To exclude false positives) Clustering Dose response tests(IC_{50}/EC_{50}) (n2, 6 dose, 320 cpds) **Purity check of compounds** Hit report Hit compounds Hit expansion Evaluation of related compounds Parallel synthesis with HT-chemistry SAR analysis Hit follow-up services **Profiling** Selectivity/Species difference Mode of inhibition/activation in vitro ADME-tox assay **Cellular assays Advanced hit**

HTS report

Compound	Cluster ID	Primary assay IC50((M)	Counter assay IC50(M)	Primary assay (Graph)	Counter assay (Graph)	Chemical properties				Purity	Notes
No						MW	HBD	HBA	НА	(%)	Notes
AXL1	1	8.0E-08	>1.0E-05					• •		95.5	kinase A inhibitor
AXL2	1	2.9E-07	>1.0E-05					• •		90.5	kinase A inhibitor
AXL3	1	4.9E-06	>1.0E-05					• •		95.3	kinase A inhibitor
AXL4	2	3.2E-08	>1.0E-05					• •		85.4	promiscuous
AXL5	3	1.2E-06	>1.0E-05					•		97.2	
AXL6	3	2.5E-06	>1.0E-05					•		98.1	
AXL7	3	4.2E-06	>1.0E-05					• •		95.4	

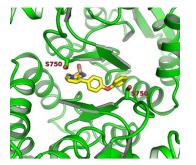
- > Legacy assay data including annotation (target classes) and cell toxicity etc.
- > Chemical properties (QED,HBA/HBD, AlogP, tPSA, Fsp3 etc.)
- > Clustering, Comments by medicinal chemists

We offer an HTS report with above information for clients

Capability for Lead Generation/Optimization

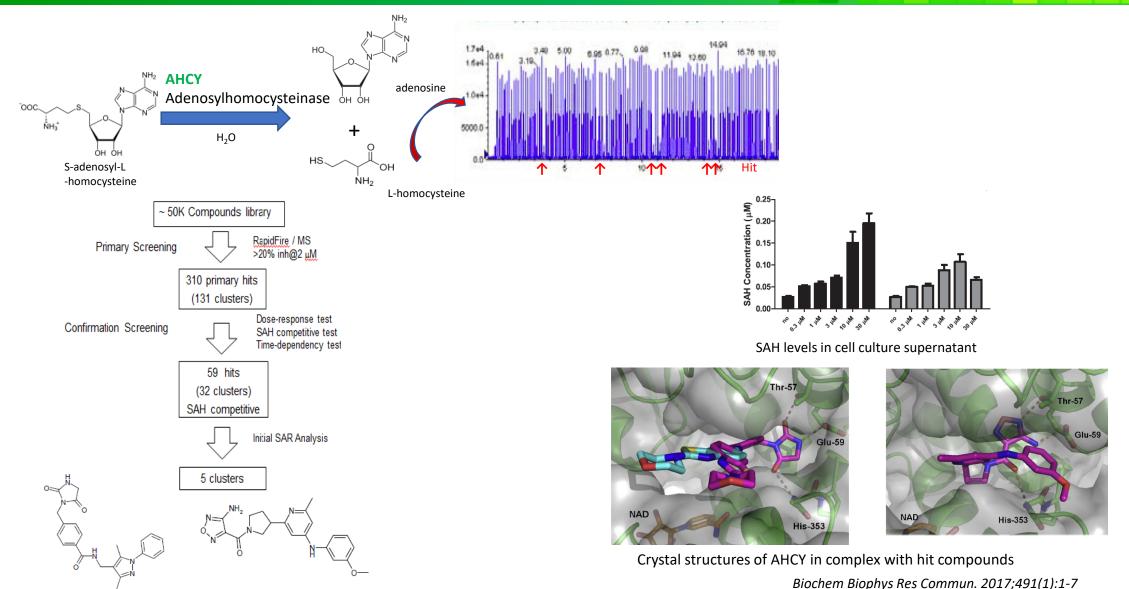
Target Assay Screening Hit to Lead optimization IND

- Biochemical assay (potency/selectivity/species for SAR study)
- Mode of action/kinetics analysis and profiling assay
- Cell-based assay (Cellular target engagement, Cellular function etc.)
- Biophysical analysis for target-compound interaction assay
 - AS-MS, TSA, NMR, ITC, SPR, X-ray crystallography


Kinetics assay with SPR

Thermodynamics assay with ITC

Electrophysiology assay with auto patch clamp


Neuropsychopharm **44** 961–70 (2019)

X-ray crystallography

We provide useful data for drug discovery at the LG / LO stage by using various in vitro assay techniques.

Practical example- hit finding using HT-MS-

Practical example - GPCR biased ligands-

GPR39 positive allosteric modulators

Primary screening

Library: >600,000 cpds at 3μM

hGPR39 cAMP assay (Gs) with EC₂₀ Zn²⁺

Counter assay

Profiling assay

hGPR39 cAMP assay (Gs) Calcium/IP1 assay (Gq) SRE-Luc assay (G12) Arrestin assay

Gs Biased ligands

Biochemical Pharmacology 140 (2017) 105–114

Practical example-Fragment-Based Approach

BCL6 inhibitors (PPI inhibitors)

Primary screening

Fragment library (1494 compounds)

SPR

BIACORE 4000

200 mM stock in DMSO <350 Da (ave. 180 Da)

Single point assay at 1 mM mtBCL6^{BTB}, wtBCL6^{BTB}, wtBCL6, Neturavidin

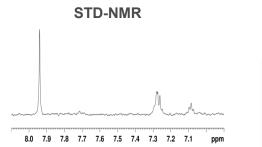
> 64 compounds (hit rate: 4.3%)

Hit confirmation

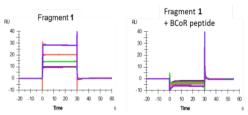
Dose response (@ 0.25, 0.5, 1, 2 mM)

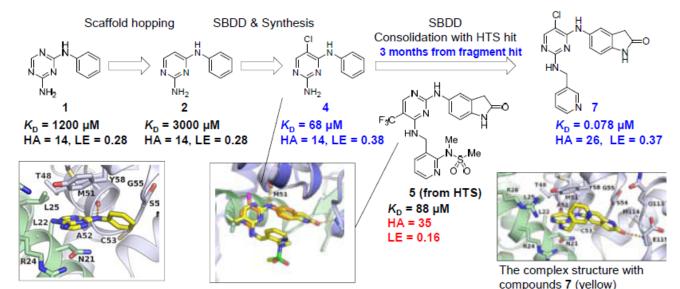
> 64 compounds

STD-NMR


Bruker 600 MHz w. cryoprobe

> 7 compounds (0.47%)


Competition experiment by

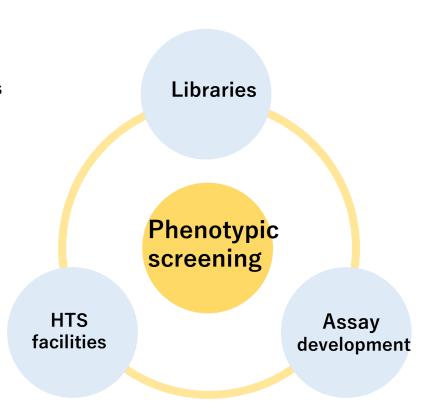

X-tal

1 compound (0.067%)

Competition experiment

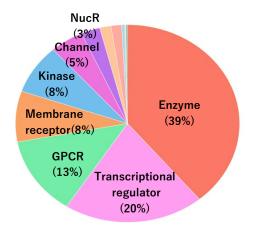
J Med Chem. 2017 May 25;60(10):4358-4368.

Phenotypic screening


- Objectives
- Hit-Lead finding
- Drug repositioning
- Target discovery

♦ High quality and attractive libraries

- Diversity
- Biologically anotaation
- FDA approved
- Focused


Cutting edge facilities

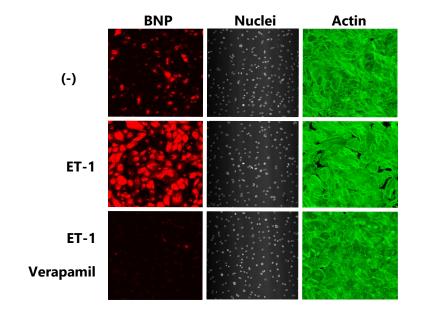
- Full auto system
- Wide rage of devices
 Envision
 Incell6000
 qRT-PCR system etc.
- BSL2 laboratory

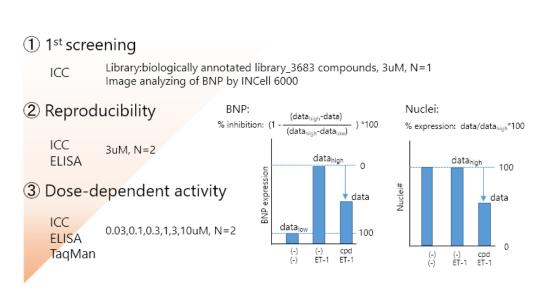
Target profiles of annotated library

(7,000 cpds)

Comprehensive services

- · Cell construction
- Assay platforms
 Reporter, RT-PCR, HCA etc.
 iPS/Primary cells
 CRISPR CAS KO screen
- HTS adaptation




Practical example of HTS using iPS cells

Heart hypertrophy assay with iPS differentiated cardiomyocytes

IN Cell Analyzer 6000(GE Healthcare)

➤ High content screen using iPS cells resulted in identification of hit compounds including FDA-approved drugs and the related pathways.

Integrated HTS platform

Pharmaceutical origin, huge, high-quality and diverse library

2. State-of-the-art infrastructure

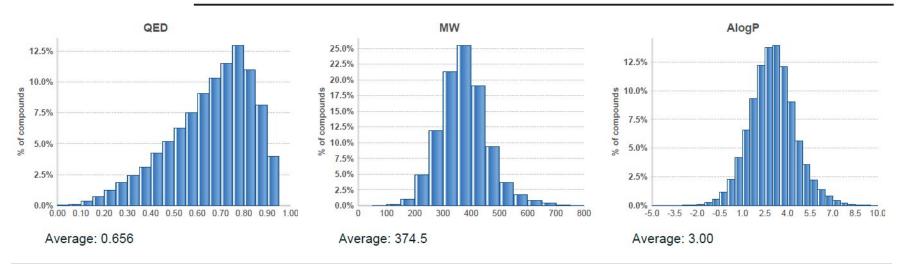
- Fully automated screening systems
- Comprehensive platforms covering diverse target classes and phenotypic screens
- A proven track record of more than 600 HTS campaigns for drug discovery

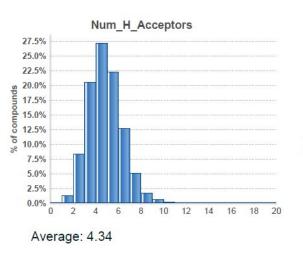
3. High quality and comprehensive services

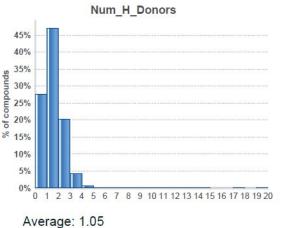
- Comprehensive services in hit identification including strategy planning, assay development, HTS and profiling
- Hit expansion services including SAR analysis, design and synthesis of related compounds by medicinal chemists
- High-throughput-ADMET profiling services with extensive experience and sophisticated protocols

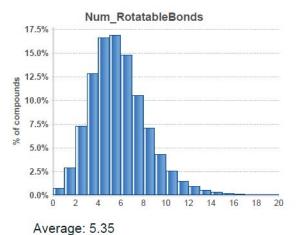
We efficiently offer high-quality hit compounds through our integrated HTS platform

We are Your Best Partner

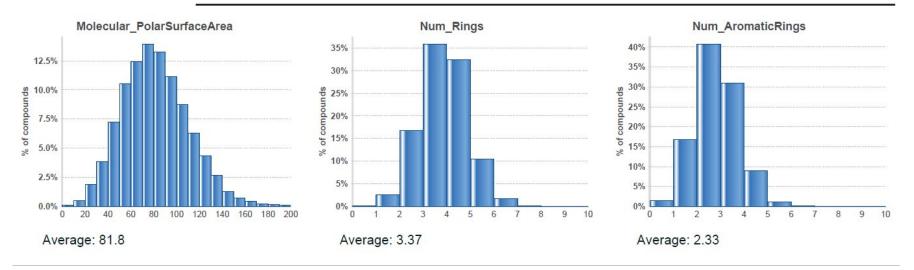


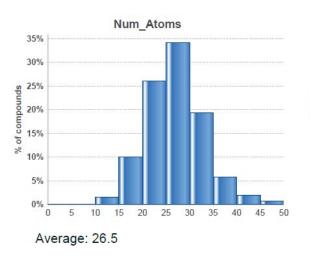

Chemical properties of Diversity Library (pooled)

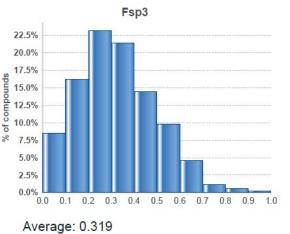


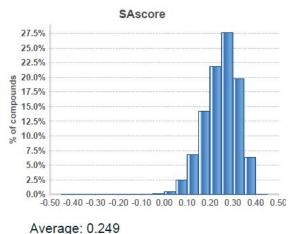

Diversity library (ca.320K)

Published at 09/24/20






Chemical properties of Diversity Library (pooled)



Diversity library (ca.320K)

